

Overcladding

Cladding

GigaPOF[®]-120SR Short-reach perfluorinated optical fiber

GigaPOF-120SR is a revolutionary POF offering high performance and

unmatched simplicity in a single package. With easy termination, relaxed optical alignment tolerances, and excellent IR and visible transparency, GigaPOF-120SR takes POF to a whole new level.

Graded-index perfluorinated POF: combining the best of the glass fiber and plastic fiber worlds

Core

Until now, the simplicity of plastic optical fiber came with a heavy price: low performance and a restriction to visible wavelengths. The Chromis GigaPOF[®] line overcomes that trade-off with low attenuation, IR-transparent perfluorinated polymer materials, a graded refractive index, and exacting geometric tolerances. GigaPOF-120SR easily supports Gigabit Ethernet and other high-speed applications at distances up to 100 meters. Fast Ethernet is supported up to 200 meters.

A versatile performer

GigaPOF-120SR meets the need for a high-performance fiber that can be used with very inexpensive connectors and apparatus. The $120-\mu m$ core of this fiber allows wide alignment and dimensional tolerances for components, but still couples well to most high-speed detectors.

Like the rest of our GigaPOF[®] line of optical fibers, GigaPOF-120SR can be easily terminated with simple, inexpensive tools, and tolerates long-term installed bend radii as small as 10 mm.

Unequaled speed and flexibility

No other large-core optical medium provides the bandwidth and flexibility of GigaPOF-120SR. With minimum installed bend radius less than one third of 100/140 multimode silica fiber, and bandwidth 30 times higher than step-index POF, GigaPOF-120SR is your best choice for high speed in tight spaces.

Product Specifications	
Transmission Characteristics	
Attenuation at 850 nm (dB/km)	<u><</u> 60
Attenuation at 1300 nm (dB/km)	<u><</u> 60
Bandwidth at 850 nm (MHz.km)	<u>></u> 300
Numerical aperture	0.185 ± 0.015
Macro-bend loss (dB for 10 turns on a 25-mm radius quarter circle)	<u>≤</u> 0.60
Zero dispersion wavelength (nm)	1200–1650
Dispersion slope (ps/nm ² .km)	<u>≤</u> 0.06
Physical Characteristics	
Core diameter (µm)	120 ± 10
Over-cladding diameter (µm)	490 ± 5
Core to over-cladding concentricity (μm)	<u><</u> 5
Maximum tensile load (N)	7.0
Long-term bend radius (mm)	10.0
Environmental Performance	
Temperature induced attenuation at 850 nm from –20 °C to +70 °C (dB/km)	<u><</u> 5
Temperature induced attenuation at 850 nm from +75 ^o C 85% RH 30 day cycle (dB/km)	<u>≤</u> 10